Predicting the dynamics of an oligo-oscillatory reaction by an artificial neural network
نویسنده
چکیده
Artificial neural networks (ANNs) are model-free computationat tools dtat can "learn" dte linear or nonlinear rules embedded in a dataset. We report dte results of an attempt to utilize ANNs in dte field of reaction kinetics. A feedforward network is trained to predict dte main dynamical feamres of oligoasci/lations in dte acidic bromate-ascorbic acid-malonic acid reacting mixture, in which the concentration of bromide ion (an intermediate) shows three extrema as a function of time. Inputs to die network are the initial concentrations of reactants, while outputs are dte predicted values of bromide-ion co~ntration and reaction time at dte extrema. The network is first tested on a numerically generated dataset uxI dten applied to experiments. The results provide evidence dtat ANNs can be efficiently employed for the prediction of the dynamics of complex chemical systems, especially, when the mechanism of a reaction is not fully understood.
منابع مشابه
Bedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملArtificial neural network models for production of nano-grained structure in AISI 304L stainless steel by predicting thermo-mechanical parameters
An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN model are in good agreement with the experimental data. The model is used to predict an appropriate annealing condition for austenite reversion through the martensite to austeni...
متن کاملPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004